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Markov-switching range-based volatility model and its 

application in volatility adjusted VaR estimation 
 

 

 

 

 

 

Abstract  

    We propose a more flexible range-based volatility model which can capture volatility 

process batter than conventional GARCH approach. Considering the regime switching 

process is appropriate for dealing the structure change embedded in the time series data. 

Range-based volatility CARR model with Markov-switching structure can assist us to 

describe the effect for exogenous shock to market data. After the data fitting and VaR 

estimation, we conclude that the range-based volatility method is better than the return-based 

GARCH model in volatility fitting. In particular, incorporating the possibility of regime 

switching into volatility process can boost the efficiency for VaR estimation. We also present 

an empirical application for demonstrating our model could characterize the unexpected 

switching of volatility process. Furthermore, comparing with non-regime switching volatility 

model, our model our model outperforms other alternatives on the estimation of volatility 

adjusted historical VaR. 
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1. Introduction 

 

Since the concerned financial market variables suffered dramatic shocks at times in 

relative steady state, the corresponding traditional linear fitting model should face the poor 

performance. It is natural to develop more realistic time series model to capture these 

phenomena. There are a number of nonlinear adjustment approaches to model financial time 

series with unexpected dramatic changes. Examples include threshold autoregressive, smooth 

transition and Markov-switching model. The advantage of using Markov switching approach 

is that there is no feedback from the observed information to the switching process. That is to 

say the switching process is dominated by the Markov chain. In this article we concern about 

the Markov-switching method proposed by Hamilton (1989, 1990), since this method treats 

the regime shift as an exogenous variable. The Markov-switching model has been applied 

from mean to variance equation. The combination of Markov-switching and volatility model 

can provide much more flexible estimation. The advantage is to allow the estimated 

coefficients change in different states. In financial econometrics, one of the classical volatility 

models is the ARCH/GARCH family pioneered by Engle (1982) and Bollerslev (1986). The 

extensions of regime switching approach for ARCH/GARCH model have been widely 

studied in financial literature. 

Lamoureux and Lastrapes (1990) propose using Markov-switching approach to depict 

the shift of unconditional variance. Based on this suggestion, Cai (1994) and Hamilton and 

Susmel (1994) develop the Markov-switching ARCH model. Cai (1994) and Hamilton and 

Susmel (1994) employ the ARCH model since their model is restricted to the path 

dependence. In fact, the problem of path dependence may cause unattainable estimation. As a 

remedy, Gray (1996) integrates out the path dependence by conditional distribution of error 

term. Gray’s notion is to use the GARCH term to skillfully evade the regime path. This 

method is undoubtedly workable for estimation but is harmful to multi-period-ahead 
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volatility forecasting. Klaassen (2002), therefore, modifies Gray’s model and provides a 

solution to this problem. Although Gray (1996) and Klaassen (2002) have overcome the 

problem of path dependent, their model has the problem of intractable likelihood function. 

Alexander (2008), Hamilton (2008) and Lange and Rahbek (2008) show that the 

Markov-switching GARCH model provided by Haas, Mittnik and Paolella (2004) could 

circumvent this problem. In addition to analytical tractability, Haas, Mittnik and Paolella’s 

(2004) model has other advantages, such as the existence of stationarity conditions, and the 

possibility of allowing dynamic properties of process.  

The foregoing are the return-based volatility models with Markov-switching. In this 

paper we replace the Markov-switching volatility model with the range-based ingredient, 

since they both belong to Multiplicative Error Model (MEM) of Engle (2002) and their 

estimated approach is of great similarity. The benefit of using range data is that they consider 

two elements of information: high and low asset prices; on the contrary, the traditional 

approach of using return data can only reflect the close price. As more information is 

contained in the range data, the estimation based on them is expected to give more efficient 

result. This conjecture has been supported by Parkinson (1980), Rogers and Satchell (1991), 

Gallant, Hsu, and Tauchen (1999), Yang and Zhang (2000), Alizadeh, Brandt, and Diebold 

(2002), Brandt and Jones (2006), Chou (2005, 2006), Chou and Cai (2009) and Chou, Wu, 

and Liu (2009). According to these studies, it is believed that the range-based volatility model 

could serve as an effectual alternative to the return-based case in depicting the dynamic 

volatility process. Therefore, this study is based on the range-based volatility model. 

In the empirical result, it is shown that the regime switching phenomenon could be 

clearly depicted if it is really in presence. In addition, through our model specification, we see 

the volatility processes have contrastingly different dynamics under different regimes that 

incorporate the smooth and volatile pattern. We follow the suggestion of Hamilton (2008) and 
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Hamilton and Susmel (1994) to illustrate the Markov-switching range-based volatility model 

is superior to single regime volatility models. That is to compare models’ forecasting abilities. 

Consequently, we apply the estimated volatility in measurement of historical VaR estimates. 

As a result of estimating the regime switching volatility model needs a longer sample period 

and that might cause estimation bias for unadjusted historical VaR estimates, especially for 

returns volatility containing regime switching, this study chooses the volatility adjusted 

historical simulation to measure the VaR of indices returns. Our empirical results show that 

using Markov-switching range-based volatility model for adjusted historical VaR estimation 

outperforms using other alternatives including CARR, GARCH and Markov-switching 

GARCH model. 

    The remainder of this paper is arranged as follows. In section 2 we introduce the 

Markov-switching CARR model (MS-CARR), the volatility adjusted historical VaR 

estimation and basic conservatism, accuracy and efficiency evaluation for VaR estimates. The 

Monte Carlo simulation with MS-CARR model is reported in section 3. Section 4 presents 

the main empirical results. Finally section 5 provides our concluding remarks. 

 

2. Regime switching range-based volatility model and volatility adjusted VaR 

estimation 

 

This section introduces the proposed model and discusses its own estimating procedure. 

In addition, we also report the volatility application for volatility adjusted VaR estimation and 

its assessment criteria. 

2.1  The Markov-switching CARR model 

    The range-based volatility model (CARR) proposed by Chou (2005) can be express as, 
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where Rt denotes the observed high low range in logarithm type during the time interval t, t  

is the conditional mean of range, and t  is assumed to be distributed with a density function 

f(.) with a unit mean. 

To allow regime switching in dynamical range-based volatility process, we construct the 

MS-CARR model with general k-regime as below, 

ttst t
R  , ,                                                               (2) 

)Pr( 1 isjsp ttij    i j=1 k,                                       (3) 

1,1,   tsstssts ttttt
R                                                   (4) 

where Rt is the observed high low range in logarithm type during the time interval t, t  is 

assumed to be distributed with a density function f(.) with a unit mean, and ts  follows a 

Markov chain with finite state space S={1 k}. The transition probability is 

illustrated in eq. (3). By probability axiom, the sum for probabilities have to satisfy 





k

j

ijp
1

1  for i = 1, 2,…, k, and 10  ijp  for i j = 1, 2,…, k. According to the time 

varying transition probabilities, it is easy to infer the stationary distribution of the Markov 

chain as ts

 . The regime variance, tst , , follows the CARR(1,1) framework shown in eq. 

(4). The coefficients (
ts ,

ts ,
ts ) in the conditional range equation are all positive to ensure 

non-negative constraint for tst , . Furthermore, eq. (4) can be rewritten as 
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 , for st=1,…,k. By this specification, the conditional range 

with regime change, tst , , depends only on the within-regime CARR parameters. In addition, 

the parameters 
1)1( 

tt ss  , 
ts , and 

ts  can be regarded as the total impact effect, the 

short-run impact effect, and the long-run effect of shocks to regime ts  conditional range 

respectively.  
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    We derive the log likelihood function of this estimator as below. According to Hamilton 

(2008), we can make an inference of ts  through the observed high low range Rt. By the case 

of two probabilities, we can infer that, 

);Pr( θttjt Ijs  , j=1,2,                                                   (5) 

where the information set is },,...,,{ 011 RRRRI ttt  , the unknown vector parameters are 

)',,,,,( 2211 pp
tttt ssss θ , and the sum for two state probabilities is unity. We can obtain 

the state probabilities by iteration method. The Eq. (6) can be viewed as the input for 

generating Eq. (5). 

);Pr( 111, θ  ttti Iis , i=1,2,                                                (6) 

The distribution for Rt is assumed to follow the exponential distribution with unit mean, since 

the range data is positively valued. The density function for two regimes is, 

]exp[);,( 1 tsstttjt RIjsRf
tt

   θ , j=1,2,                                  (7) 

By the input Eq. (6), we can estimate the conditional density as, 
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The renewed joint probabilities can be expressed as, 
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After we execute the iteration, the log likelihood function can be written as, 





T

t

ttT IRfRRRRf
1

1021 );(log);,...,,(log θθ .                                   (10) 

The unknown vector parameters (θ ) can be obtained by maximizing the Eq. (10). 

 

2.2  The estimation of the volatility adjusted historical VaR 
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    It is hard to directly judge the performance of Markov-switching volatility model, and 

therefore we apply the estimated volatility to evaluate the VaR estimates. We consider that the 

well performance of VaR estimates expresses the better estimation of volatility model. It is 

essential to examine the practical performance for MS-CARR model. We employ the 

historical VaR volatility adjustment approach proposed by Duffie and Pan (1997) and Hull 

and White (1998) for the time being. It is reasonable to define the volatility adjusted returns 

series as, 

t

t

T
Tt rr





ˆ

ˆ~
,  ,  t=1,…,T,                                                     (11) 

where tr  and t̂  are the unadjusted returns and the estimated standard deviation series, 

respectively. The time index T is fixed, and T̂  is the constant estimated standard deviation 

at time T. We could calculate the historical VaR estimates by this adjusted returns series. Such 

on adjustment method could eliminate estimate bias from a longer historical sample period. 

 

2.3  Assessment Criteria for the VaR estimation 

    A better VaR estimation could provide both risk control and profit. The conservatism 

and accuracy is to measure the risk controlling ability. The efficiency is to create the profit 

after bearing the risk. The assessment criteria for conservatism, accuracy and efficiency are 

measuring the performance of competing VaR estimations. 

2.3.1  Conservatism  

    We employ the mean relative bias (MRB) proposed by Hendricks (1996) to compare the 

effect of conservatism for these competing VaR estimations. The MRB can judge the relative 

size of various VaR estimates. The larger value of MRB shows more conservatism for the 

corresponding VaR estimates. Given N VaR estimations, and T time periods, the mean 

relative bias can be defined as, 
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2.3.2  Accuracy 

    As to the measurement for accuracy, one can adopt the binary loss function (BLF) 

developed by Lopez (1999), and the LR test for unconditional coverage (LRuc) proposed by 

Kupiec (1995).
 2

 The accuracy criterion can explain whether the estimated VaR is able to 

cover the realized daily loss. The BLF takes account of whether the given days loss is greater 

or smaller than the estimated VaR. The BLF contains two possible daily realizations. When 

the estimated VaR fails to cover the realized loss, the 1iBLF . Otherwise, the 0iBLF  

represents the estimated VaR is able to cover the profits and losses. The BLF for a method i 

is, 
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,                                            (13) 

where 1, tir  is the realized return in time t+1. It is intuitive to calculate the average binary 

loss function (ABLF) by collecting the BLF for every period. The value of the ABLF 

provides an indication of accuracy of VaR estimates, since that is the actual failure rate.  

As to the LRuc test for testing the VaR estimates’ accuracy, the null hypothesis of LRuc 

test is assuming that the probability of failure for each trial ( c̂ ) is amount to the desired 

significance level ( c ). A rejection of this hypothesis indicates the inappropriateness of a 

VaR estimation under consideration. The LR statistics for unconditional coverage can be 

shown as, 

2
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2
 Although Christofferson (1998) develop a more complete LR test incorporating unconditional coverage, 

independence and conditional coverage test; our empirical results show the failure process contains no Markov 

process. Consequently, we apply the LR test of unconditional coverage to evaluate the accuracy of VaR 

estimation. 
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where c  denotes the desired significance level, 0n  is the observed number of 

non-exceptions, 1n  denotes the observed number of exceptions, and the rate of failures can 

be calculated as )/(ˆ
101 nnnc  .  

2.3.3  Efficiency  

The efficiency criterion is essential in that it provides an objective judgment on the 

performance of VaR estimations, since it can point out whether the accurate model is too 

conservative to abandon profits for investors. We use the mean relative scaled bias (MRSB) 

proposed by Hendricks (1996) as the efficiency assessment statistic. The MRSB is aimed at 

determining which VaR estimation providing adequate risk coverage contains smallest 

average risk measure. The computation of this statistic consists of the following two steps. 

The first step is to calculate the scaling factor ( iX ) for each model i so that, 


 






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T

t tiiti
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ici
VaRXrif
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, ,                                  (15) 

where iF  denotes the total number of exceptions for model i, 1, tir  is the realized return in 

time t+1, T is the sample size, and c  is the desired significance level. The second step is to 

compare the scaled VaR figures with their relative average sizes by using the mean relative 

bias calculation, 


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, 
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where N is the number of competing VaR estimations. The VaR estimation with smallest 

MRSB is superior to others in that it is the most efficient one. 

 

3. Monte Carlo simulation with MS-CARR model 

 

In this section we use the Monte Carlo simulation to illustrate the property of MS-CARR 
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model. According to the previous literatures of Markov switching volatility model, the 

experimental design of Monte Carlo simulation needs to discuss the simulated performances 

under the different degrees of Markov effect.
3
 We could directly comprehend the advantage 

of considering Markov switching approach in CARR model by this experimental design. Our 

simulation experiment considering two scenarios follows a two-state MS-CARR(1,1) model 

by eq. (2)-(4). The given parameters are shown as follows, 

)25.0,05.0(),( 21  ,                                                    (17a) 

)05.0,05.0(),( 21  ,                                                    (17b) 

)7.0,7.0(),( 21  ,                                                      (17c) 

)}999.0,999.0(),5.0,5.0{(),( 2211 pp .                                        (17d) 

The scenario 1 of )5.0,5.0(),( 2211 pp  denotes the MS-CARR model with the weakest 

Markov effect, but the opposite scenario 2 of )999.0,999.0(),( 2211 pp  shows that with the 

strongest Markov effect. Figure 1 plots the simulation results including the simulated range, 

volatility, and state for these two different scenarios.  

 

[Figure 1] 

 

There are some main findings in Figure 1. Firstly, the scenario 1 of weakest Markov effect 

shows that it is difficult to recognize the regular pattern between volatilities and its regimes. 

However, this regular pattern is obvious in the scenario 2. This indicates the degree of 

Markov effect plays an important role for Markov-based model as the Markov effect is strong. 

Secondly, the different range levels display various volatility regimes in scenario 2. Finally, 

by the bottom panel of Figure 1, the MS-CARR model with strongest Markov effect could 

                                                 
3
 Also see Chen and Tsay (2011), Alexander and Lazar (2006), Hass et al. (2004) and Carvalho and Lopes 

(2007). 
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produce volatility clustering that perfectly reflects the behavior of financial data. 

 

4. Empirical analysis 

 

In this section we use empirical data to examine our proposed MS-CARR model and a 

few related models on their performance in VaR estimation, and give comparison according 

the assessment criteria set out in the preceding section.  

4.1.  Data description 

The data we use in our analysis are the indices of three most representative markets in 

the USA and UK, including the Nasdaq index, the S&P 500 stock index and the FTSE 100 

index. These data are collected from Yahoo Finance (http://finance.yahoo.com/) for the period 

starting from February 3, 2003 to January 29, 2010. Over this period of time, the close price  

of each market trading day is collected for the return based models (GARCH, MS-GARCH), 

whereas the daily high and low prices are collected for the range based models (CARR, 

MS-CARR).  

Descriptive statistics for daily returns and ranges data are reported in Table 1. The high 

kurtosis for all market returns and ranges exhibit fat-tailed shapes, and the range distribution 

is even more fat-tailed. In addition, the skewness for all market returns is negative skewness. 

This indicates that the left tail is considerably extreme for all market returns. Figure 2 further 

shows how the daily indices, ranges, and returns evolve through the period under study. At 

first glance, the GARCH family model seems appropriate to fit these trading data, since the 

pattern of daily returns for all markets represents volatility clustering. Furthermore, it can be 

obviously seen that for all the three markets, the indices, returns, and ranges have undergone 

a dramatic (structural) change since 2008 when the financial crisis broke out. 

 

http://finance.yahoo.com/
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[Table 1] 

 

[Figure 2] 

 

4.2.  Empirical results 

According to the signal of ARCH effect in Figure 2, it seems that the concept for 

conditional heteroskedasticity volatility might be proper to be incorporated. Table 2 states the 

results of data fitting for the simple CARR(1,1) and GARCH(1,1) model. This study adopts 

the suggestion of Engle (2001) to use the quasi-maximum likelihood estimation proposed by 

Bollerslev and Wooldridge (1992) to estimate these models.
4
 The estimation results show 

that the coefficient estimation for   in CARR model are 0.074 for the Nasdaq index, 0.086 

for the S&P 500 index and 0.133 for the FTSE 100 index, but those of GARCH model are 

0.058 for the Nasdaq, 0.067 for the S&P 500 and 0.088 for the FTSE 100. This indicates the 

CARR model could depict more sensitivity of volatility transitory shocks. In addition, the 

estimated results conform to the stationarity and non-negative conditions of CARR and 

GARCH volatility models. 

 

[Table 2] 

 

    It is critical to detect whether there is a structural change in the volatility process. If the 

structure change of volatility does not actually exist, fitting to a volatility model with regime 

switching nature could be meaningless. Consequently, it is natural to adopt two simple tests 

to check the existence of structure change in the static volatility processes. We use the 

financial credit crisis as the tentative break point in the time horizon, and separate the entire 

                                                 
4
 Engle (2001) interprets using the estimation of robust standard errors can reduce the trouble of over 

heteroskedasticity. 
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sample into two periods for the ease of comparison.
5
 Table 3 reports the static volatility 

equality test for these two sub-periods. We test the variance and mean range for examining 

whether the different sub-periods static volatilities have a significant change. It is evident to 

realize that the variances for two sub-samples are totally different by Panel A of Table 3, and 

further the crisis event really changes the variance by the result of F-test. According to Panel 

B of Table 3, the mean range has two fold increases after the episode. 

 

[Table 3] 

 

    Although the above testing evidence the crisis event could change the variance and 

mean range, we further anticipate the outbreak of the crisis could also have caused a 

structural change in the dynamic volatility process. Hence, we estimate the CARR and 

GARCH model with a time break dummy variable. The results of model estimation are given 

in Table 4, where we see all the estimated coefficients are significant. Based on these results 

of Table 3 and Table 4, we could infer that this crisis not only could change the static 

volatility but dynamic volatility. In other words, the necessity of considering the regime 

switching nature in the volatility model is perfectly justified. 

 

[Table 4] 

 

    Billio and Caporin (2005) state an essential inference that in large systems the Markov 

switching dynamic conditional correlation model may have some convergence problems if a   

high number of parameters are involved. Naturally, the MS-CARR model may have the same 

problem, too. To avoid over parameterization, it is appropriate to estimate the MS-CARR 

                                                 
5
 Preston (2009) has clear discussion on the date of financial credit crisis. 
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structure with two different regimes. The estimated results for two-state MS-CARR and 

MS-GARCH model are shown in Table 5. By the specification of two regime states, we could 

calculate two different volatility regime processes, the smooth and volatile volatility regime. 

If the estimated parameters for both regime processes follow the stationarity condition of 

111    and 122   , we define the volatility process containing relative smaller 

coefficient of i  as the smooth volatility regime, since the i  is the estimated parameter 

of short-term effect. Nevertheless, as one of the estimated parameters of volatility regime 

shows 1  , we define that as the volatile volatility regime. By the MS-CARR model, 

the persistent rate (  ˆˆ  ) of smooth volatility regime is 0.978 for the Nasdaq, 0.975 for the 

S&P 500 and 0.951 for the FTSE 100, but that of volatile volatility regime is 0.930 for the 

Nasdaq, 0.951 for the S&P 500 and 0.946 for the FTSE 100. This indicates that the smooth 

volatility regime has higher volatility persistent rate for all market indices than volatile 

volatility case. In other words, the smooth volatility regime shows the more persistent 

sensitivity of the volatility expectation to market shocks. The components of persistent rates 

of different regimes are contrasting different for all market volatilities. The estimated 

transition probability from smooth volatility to volatile volatility regime ( 11
ˆ1 p ) is 0.001 for 

the US market and 0.002 for the UK market; nevertheless, the estimated transition probability 

from volatile volatility situation to smooth volatility regime ( 22
ˆ1 p ) is 0.005 for both 

markets. This indicates that the transition probability of smooth volatility regime is lower 

than that of volatile state. We could infer the expected transition period through the estimated 

transition probability. The expected transition period from smooth volatility to volatile 

volatility regime ( )ˆ1(1 11p ) is approaching 3.97 year for both Nasdaq and S&P 500, and 

1.98 year for the FTSE 100; nevertheless, the expected transition period from volatile 

volatility to smooth volatility regime ( )ˆ1(1 22p ) is about 0.79 year for all market indices. 
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Based on the previous statistics, we could conclude that the volatility for all market indices 

contains the regime switching behavior and the expected transition period from volatile 

volatility to smooth volatility regime is shorter than that from smooth volatility to volatile 

volatility regime. It means that the volatility is relative stable in the long term although big 

shocks may cause it violent oscillation and change its regime from smooth to volatile. We 

also calculate the stationary regime probabilities. According to the estimated result of 

MS-CARR model, it shows that the probability for volatility of Nasdaq contributing to 

smooth (volatile) regime in next time is 0.796 (0.204), and that of S&P 500 contributing to 

smooth (volatile) regime in next time is 0.784 (0.216). As to the volatility of FTSE 100, the 

probability for that contributing to smooth (volatile) regime in next time is 0.772 (0.228). In 

brief, the probability of expected volatility for all market indices contributing to smooth 

regime is over 75%.  

 

[Table 5] 

  

[Figure 3] 

 

    In Figure 3 we plot the estimated range-based volatility, the estimated Markov-switching 

range-based volatility and the smoothed probability for all market indices. The estimated 

Markov-switching range-based volatility characterizes more sharply increasing pattern than 

that of range-based volatility from 2008 to 2009. We could attribut this phenomenon to the 

flexible specification of regime switching process. The volatility pattern of smoothed 

probability starts from smooth regime and then switches to volatile regime but finally it back 

to smooth regime. Although the pattern of smoothed probability for FTSE 100 has a little 

more fluctuation than Nasdaq and S&P 500 during 2008 to 2009, it is obvious that the 
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smoothed probabilities for all market indices show a rather similar pattern. These results 

illustrate that the phenomenon of regime switching volatility is indeed existent in all market 

indices, and the MS-CARR model could depict this pattern reasonably better. In addition, we 

also find that the smooth (volatile) volatility regime could match the relative stable (dramatic 

changing) volatility for all market indices.  

    We use the estimated volatility fitting from CARR, GARCH, MS-GARCH and 

MS-CARR model to calculate the 1-day historical VaR estimates at 1% significant level for a 

position on all market indices for 300 trading days. Table 6 reports the forecasting 

performance summary for different VaR estimations. Firstly, from the conservatism measure, 

MRB, we see that the GARCH based VaR estimation is the most conservative for all the three 

market indices. The least conservative model varies: it is MS-CARR for Nasdaq and S&P 

500, while it is MS-GARCH for FTSE 100. Secondly, from the accuracy criterion ABLF and 

LRuc test results, we see all the four models performs reasonably well in that the null 

hypothesis of appropriate VaR estimation is not rejected for all market indices. In brief, all 

the four volatility models for VaR estimation are appropriateness through the conservatism 

and accuracy criteria. However, a conservative and accurate but inefficient VaR estimation 

would tend to overestimate VaR during low risk period. Therefore, the efficiency aimed at 

deciding which VaR estimation provides better assets allocation could provide further 

judgment criterion based on conservatism and accuracy. Thirdly and more importantly, 

according to the efficiency assessment measure, the MS-CARR based VaR estimation gives 

the smallest MRSB value of -0.089 for Nasdaq, -0.101 for S&P 500, and -0.063 for FTSE 

100. This indicates the MS-CARR based VaR estimation could provide more precise resource 

allocation than other competing models. In addition, the MRSB value for the models with 

regime switching nature is smaller than that for the models with single regime, implying that 

the volatility model considering the regime switching approach could nicely depict the 
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volatility dynamic process. As a summary, from these assessment criteria we see that the 

MS-CARR based VaR estimation is the most efficient method than those based on CARR, 

GARCH and MS-GARCH. In addition, we also see the dynamic volatility model 

incorporating Markov-switching process could capture volatility process more accurately 

than the single regime volatility model. In short, the Markov-switching range-based volatility 

model outperforms than other competing volatility models. 

 

[Table 6] 

 

[Figure 4] 

 

    We compute not only the daily historical VaR estimates at 1% significant level for 300 

trading days on all market indices but their returns, and then graph them in Figure 4 for 

checking the exceptions points easily. It is more obvious to find out that the pattern of all the 

four VaR estimates responds to changes in the underlying returns very quickly. Besides, the 

results of accuracy analysis for all VaR estimations are almost equivalent by Figure 4. This 

result is in line with the outcome of accuracy criterion on Table 6. 

 

5. Conclusion 

 

    In this paper we present a new approach to modeling the range-based volatility by 

allowing for Markov chain transition in the parameters of CARR model. Introducing the 

nonlinear method into the CARR model could enhance the flexibility in estimating the 

dynamic volatility process. The property of Markov chain is to capture the endogenous 

changes in the data generating process. Hence, we insert this method to explain the dynamic 
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volatility process may not always follow just one estimated dynamic process in the specific 

period. In the empirical part of this study we collect the Nasdaq, the S&P 500 and the FTSE 

100 to estimate the MS-CARR model. Though the estimated transition probability, we could 

conclude that the volatility regime switching process can be accurately captured and 

illustrated by our model specification for all market indices and the switching pattern is from 

smooth to volatile and then back to smooth volatility regime. Overall, the MS-CARR model 

could precisely depict the different dynamic volatility process across regimes when the 

endogenous shocks really make the break of single regime volatility process. We also 

calculate the expected transition period between different regimes, and evidence that the 

volatility staying smooth regime is longer than volatile case during our research period. It 

shows that the volatility is relative stable even though the uncertain shocks may change its 

regime to the volatile state. Considering the regime switching process into volatility model 

for measuring the volatility adjusted historical VaR outperforms these single regime volatility 

models, and furthermore we demonstrate that the Markov-switching range-based volatility 

model for VaR estimate provides the highest efficiency among all the models under study. 

This result illustrates that MS-CARR model is superior not only to single regime CARR and 

GARCH model but to MS-GARCH model. 
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Table 1. Descriptive statistics for the returns and ranges of daily S&P 500 and 

FTSE 100 index (2003.2.3-2010.1.29). 

                   Nasdaq                  S&P 500                FTSE 100 

 Return Range Return Range Return Range 

Mean 0.028 1.567 0.013 1.425 0.021 1.477 

Median 0.088 1.301 0.085 1.085 0.061 1.132 

Maximum 11.159 11.129 10.957 10.904 9.384 10.753 

Minimum -9.588 0.274 -9.470 0.239 -9.265 0.232 

Std. Dev. 1.487 1.079 1.365 1.200 1.296 1.135 

Skewness -0.130 3.092 -0.256 3.481 -0.100 2.941 

Kurtosis 9.851 17.858 14.503 20.433 12.142 16.248 

observation 1760 1761 1767 1768 1767 1768 

 

 

 

Table 2. CARR and GARCH model fitting for daily Nasdaq, S&P 500 and FTSE 100 

index (2003.2.3-2010.1.29). 

CARR model:         ),1e x p (~111   ttttt IRR   

GARCH model:        ),0(~11

2

1 tttttt hNIhh     

                 Nasdaq                    S&P 500                  FTSE 100 

 CARR GARCH CARR GARCH CARR GARCH 

̂   0.001 (<0.001)  0.014 (0.007)  0.002 (0.001) 0.010 (0.006)  0.002 (0.001)  0.009 (0.003) 

̂  0.074 (0.012)  0.058 (0.014)  0.086 (0.019) 0.067 (0.015)  0.133 (0.024)  0.088 (0.017) 

̂  0.909 (0.014)  0.934 (0.013)  0.886 (0.028) 0.924 (0.013)  0.837 (0.031)  0.906 (0.015) 

Q
2
(10) 13.300 [0.207] 14.629 [0.102] 10.505 [0.397] 9.617 [0.382] 12.555 [0.250] 10.076 [0.434] 

LLF -148.720 -2828.457 -225.137 -2452.944 -189.584 -2445.295 

Notes: th and t  is the return- and range-based conditional volatility, respectively. tR  and t  is the 

range and residual, respectively. LLF is the log likelihood function, p-values are in brackets and the numbers 

in parentheses are robust standard errors proposed by Bollerslev and Wooldridge (1992). Q
2
(10) is the 

statistics for serial correlation up to 10
th

 order in the squared standardized residuals. 
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Table 3. Static volatility equality test. 

 Nasdaq S&P 500 FTSE 100 

Panel A: 2

2

2

10 :  H  

2

1  
1.241 0.801 0.965 

2

2
 

6.049 6.058 4.487 

2

2

2

11 :  H
 

[<0.001] [<0.001] [<0.001] 

2

2

2

11 :  H
 

[<0.001] [<0.001] [<0.001] 

2

2

2

11 :  H
 

[1.000] [1.000] [1.000] 

Panel B: 
210 : RRH   

1R
 

1.330 1.122 1.207 

2R
 

2.502 2.625 2.537 

211 : RRH   [<0.001] [<0.001] [<0.001] 

211 : RRH   [<0.001] [<0.001] [<0.001] 

211 : RRH   [1.000] [1.000] [1.000] 

Notes: The numbers in brackets are p-values. 
2

1 and 1R  are the unconditional variance and mean 

range for February 2003 to August 2008, respectively. 
2

2  and 2R  are the unconditional variance 

and mean range for September 2008 to January 2010, respectively. 
 

 

Table 4. CARR/GARCH model with dummy variable for daily Nasdaq, 

S&P 500 and FTSE 100 index (2003.2.3-2010.1.29). 

CARR-model with dummy:  

1121121211111  



ttttt

ttt

DRDDR

R





 

GARCH-model with dummy: 

112

2

1121211

2

111  



ttttt

ttt

hDDDhh

hr





 
 Nasdaq S&P 500 FTSE 100 

  CARR   GARCH   CARR   GARCH   CARR   GARCH  

1̂   0.002 

(<0.001) 

0.015 

(0.001) 

 0.003 

(0.001) 

0.011 

(<0.001) 

 0.005 

(<0.001) 

0.009 

(<0.001) 

1̂  
 0.083 

(0.014) 

0.055 

(0.006) 

 0.083 

(0.010) 

0.061 

(0.006) 

 0.149 

(0.001) 

0.098 

(0.011) 

1̂  
 0.894 

(0.013) 

0.935 

(0.005) 

 0.876 

(0.014) 

0.925 

(0.005) 

 0.780 

(0.001) 

0.895 

(0.010) 

2̂  
 0.053 

(0.002) 

0.193 

(0.083) 

 0.045 

(0.002) 

0.243 

(0.018) 

 0.037 

(0.004) 

0.562 

(0.029) 

2̂  
- 0.266 

(0.031) 

- 0.091 

(0.007) 

- 0.222 

(0.090) 

- 0.108 

(0.007) 

- 0.403 

(0.004) 

- 0.264 

(0.021) 

2̂  
 0.159 

(0.008) 

0.110 

(0.031) 

 0.086 

(0.015) 

0.154 

(0.003) 

 0.353 

(0.115) 

0.269 

(0.017) 

LLF - 2346.861 - 4193.564 - 586.749 - 3764.242 - 4259.131 - 6958.667 

Notes: t  is the range-based conditional volatility and tR  is the range. D1 is the time break dummy 

variable for the financial credit crisis. Before 31, Aug., 2008, D1 is 0. After 1, Sep., 2008, D1 is 1. LLF is 

the log likelihood function, and the number in parentheses are robust standard error proposed by 

Bollerslev and Wooldridge (1992).  
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Table 5. Markov-switching CARR/GARCH model for daily Nasdaq, S&P 500 and 

FTSE 100 index (2003.2.3-2010.1.29). 
MS-CARR model:                               MS-GARCH model: 

  

.2,1,)P r ( 1

1,1,

,











jiisjsp

R

R

ttij

tsstssts

ttst

ttttt

t





          

.2,1,)P r ( 1

1,

2

1,

,











jiisjsp

hh

hr

ttij

tsstssts

ttst

ttttt

t





 

 Nasdaq S&P 500 FTSE 100 

  MS-CARR   MS-GARCH   MS-CARR   MS-GARCH   MS-CARR   MS-GARCH  

LLF - 150.022 - 2810.276 - 223.706 - 2427.914 - 192.699 - 2425.839 

 Smooth Regime 

1̂  0.001 

(0.001) 

0.008 

(0.004) 

0.001  

(0.001) 

0.005  

(0.002) 

0.003 

(0.001) 

0.005  

(0.001) 

1̂  
0.028 

(0.016) 

0.037 

(0.007) 

0.024  

(0.016) 

0.046  

(0.008) 

0.091  

(0.027) 

0.022  

(0.006) 

1̂  
0.950 

(0.025) 

0.955 

(0.008) 

0.951  

(0.029) 

0.946  

(0.008) 

0.860  

(0.042) 

0.965  

(0.007) 

11p̂  
0.999 

(0.247) 

0.999 

(0.127) 

0.999  

(0.211) 

0.999  

(0.125) 

0.998  

(0.272) 

0.993  

(0.084) 
1ˆ
  0.796 0.943 0.784 0.969 0.772 0.880 

Volatile Regime 

2̂  0.013 

(0.008) 

0.203 

(0.054) 

0.008  

(0.006) 

0.139 

(0.083) 

0.011 

(0.010) 

0.571  

(0.125) 

2̂  
0.249 

(0.132) 

- 0.028 

(0.009) 

0.217  

(0.108) 

0.033 

(0.033) 

0.252  

(0.139) 

0.172  

(0.082) 

2̂  
0.681 

(0.149) 

0.996 

(0.002) 

0.734  

(0.110) 

0.982 

(0.017) 

0.694  

(0.145) 

0.759  

(0.072) 

22p̂  
0.995 

(0.260) 

0.978 

(0.220) 

0.995  

(0.331) 

0.958 

(0.233) 

0.995 

(0.275) 

0.948  

(0.144) 
2ˆ
  0.204 0.057 0.216   0.031 0.228 0.120 

Notes: LLF is the log likelihood function, and the numbers in parentheses are robust standard errors proposed by Bollerslev 

and Wooldridge (1992). The stationary regime probabilities, 
1

  and 
2

 , are computed by the expression: 

)2/()1( 221122

1 ppp   and )2/()1( 221111

2 ppp  , respectively. 
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Table 6. Forecasting performance comparison for different VaR estimates at 99% 

confidence level. 
 

 

 Descriptive Statistics  Conservatism  Accuracy   Efficiency  

Mean VaR S.D. VaR MRB ABLF LRuc MRSB 

Nasdaq 

MS-CARR 

CARR 

MS-GARCH 

GARCH 

- 3.971 

- 4.120 

- 4.718 

- 5.159 

1.637 

1.753 

2.122 

1.704 

- 0.127 

- 0.100 

 0.022 

 0.205 

0.017 

0.020 

0.013 

0.000 

1.957 

1.923 

1.986 

0.000 

- 0.089 

- 0.029 

 0.017 

 0.101 

S&P 500 

MS-CARR 

CARR 

MS-GARCH 

GARCH 

- 3.934 

- 5.389 

- 5.354 

- 4.615 

1.517 

1.709 

2.537 

1.659 

- 0.128 

- 0.105 

- 0.032 

 0.265 

0.013 

0.010 

0.010 

0.003 

1.986 

2.000 

2.000 

1.761 

- 0.101 

- 0.084 

- 0.038 

 0.223 

FTSE 100 

MS-CARR 

CARR 

MS-GARCH 

GARCH 

- 3.881 

- 3.905 

- 3.784 

- 4.559 

1.417 

1.407 

1.489 

1.385 

- 0.048 

- 0.041 

- 0.078 

 0.167 

0.010 

0.010 

0.007 

0.007 

2.000 

2.000 

1.969 

1.969 

- 0.063 

 0.013 

- 0.021 

 0.071 
Notes: The conservatism criterion of MRB is the mean relative bias, and the larger MRB statistic 

shows that the corresponding model is more conservatism. The accuracy criteria of ABLF and LRuc 

denote the average binary loss function and the LR test of unconditional coverage. The efficiency 

criterion of MRSB denotes the mean relative scaled bias, and the smaller MRSB statistic means that 

the corresponding model is more efficiency. The critical value of LRuc statistic at 1% significance 

level is 6.63. 
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Figure 1: Markov-switching CARR simulation for different degrees of Markov effect. 

There are two simulated scenarios including scenario 1 (S1) and scenario 2 (S2). S1 and S2 denote the lower- and higher-degree of Markov effect, respectively. Top panel is 

the simulated range series for S1. Second panel is the simulated volatility for S1. Third panel is the simulated state process for S1. Fourth panel is the simulated range series 

for S2. Fifth panel is the simulated volatility for S2. Sixth panel is the simulated state process for S2. Bottom panel is the amplification of simulated volatility process for S2 

in different states. 
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Figure 2: The daily index, ranges, and returns for Nasdaq, S&P 500 and FTSE 100 

index (2003.2.3-2010.1.27) 

 

 
Figure 3: The range-based (CARR) volatility pattern, Markov switching range-based 

volatility pattern and smoothed probability for smooth volatility regime for Nasdaq, 

S&P 500 and FTSE 100 index (2003.2.3-2010.1.29). 
This figure plots the estimated range-based volatility (thin solid line) pattern, the estimated Markov 

switching range-based volatility (dashed line) pattern and smoothed probability (thick solid line) at a 

daily frequency. The estimated range-based volatility is modeled by the CARR model. The estimated 

Markov switching range-based volatility and the smoothed probability are modeled by the MS-CARR 

model. 
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Figure 4: 1% daily VaR estimates and daily returns for Nasdaq, S&P 500 and FTSE 100 

index (2009.1.30-2010.1.29). 
This figure plots the different daily VaR estimates and daily returns at 1% significant level. VaR_MS-CARR and 

VaR_MS-GARCH are the VaR estimates calculated by the MS-CARR and MS-GARCH model, respectively. 

VaR_CARR and VaR_GARCH are the VaR estimates calculated by the CARR and GARCH model, 

respectively.  
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